Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Biochem ; 384(2): 296-304, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18938126

RESUMO

Transglutaminases catalyze the formation of Nepsilon-(gamma-glutamyl) isodipeptide crosslinks between proteins. These enzymes are thought to participate in a number of diseases, including neurological disease and cancer. A method associating liquid chromatography and multiple stage mass spectrometry has been developed for the simultaneous quantitation of [Nepsilon-(gamma-glutamyl) lysine] isodipeptide and lysine on an ion trap mass spectrometer. Highly specific detection has been achieved in MS3 mode. The method includes a derivatization step consisting of butylation of carboxylic groups and acetylation of amide groups, a liquid-liquid extraction, and a 19-min separation on a 100x2.1-mm Beta-basic C18 column with an acetonitrile gradient elution. 13C6-(15)N2 isotopes of the isodipeptide and the lysine serve as internal standards. The assay was linear in the range of 50 pmol/ml to 75 nmol/ml for the isodipeptide and the range of 10 nmol/ml to 3.5 micromol/ml for the lysine, with correlation coefficients greater than 0.99 for both ions. Intra- and inter-day coefficients of variation ranged from 3.5 to 15.9%. The method was successfully applied to human biological samples known to be crosslinked by transglutaminase such as cornified envelopes of epidermis, fibrin, and normal and Huntington disease brain.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Reagentes de Ligações Cruzadas/química , Dipeptídeos/análise , Lisina/análise , Espectrometria de Massas/métodos , Transglutaminases/metabolismo , Calibragem , Humanos , Transglutaminases/química
2.
Rapid Commun Mass Spectrom ; 20(11): 1648-52, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16637002

RESUMO

Collision-induced dissociation, laser-induced dissociation and electron-capture dissociation are compared on a singly and doubly protonated pentapeptide. The dissociation spectrum depends on the excitation mechanism and on the charge state of the peptide. The comparison of these results with the conformations obtained from Monte Carlo simulations suggests that the de-excitation mechanism following a laser or an electron-capture excitation is related to the initial geometry of the peptide.


Assuntos
Oligopeptídeos/química , Oligopeptídeos/efeitos da radiação , Simulação por Computador , Elétrons , Raios Infravermelhos , Lasers , Modelos Moleculares , Método de Monte Carlo , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
J Am Soc Mass Spectrom ; 15(7): 966-71, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15234355

RESUMO

The reactions of the water solvated ammonia radical cation [NH(3)(+*), H(2)O] with a variety of aldehydes and ketones were investigated. The reactions observed differ from those of low energy aldehydes and ketones radical cations, although electron transfer from the keto compound to ionized ammonia is thermodynamically allowed within the terbody complexes initially formed. The main process yields an ammonia solvated enol with loss of water and an alkene. This process corresponds formally to a McLafferty fragmentation within a complex. With aldehydes, another reaction can take place, namely the transfer of the hydrogen from the CHO group to ammonia, leading to the proton bound dimer of ammonia and water, and to the NH(4)(+) cation. Comparison between the available experimental results leads to the conclusion that the McLafferty fragmentation occurs within the terbody complex initially formed, with no prior ligand exchange, the water molecule acting as a spectator partner.

4.
Artigo em Inglês | MEDLINE | ID: mdl-12939484

RESUMO

The reactions of CH(3)CHO(+) and of CH(3)COH(+) with water yield the same products, at almost the same rate. It is shown, by using a characteristic reaction of the carbene structure, that a molecule of water converts CH(3)COH(+) into its more stable isomer CH(3)CHO(+), which is a new example of catalyzed 1,2-H transfer. The dominant product is the proton-bound dimer of water which, in fact, comes from the [H(2)OH(+)...CH(3)(.)] and [H(2)OH(+)...CO] primary products whose observed abundances are poor. In a related system, ionized formamide/water, a water molecule catalyzes the 1,3-transfer leading from the solvated carbene to the [H(2)O...H(+)...H(2)N-C=O)] stable intermediate, which eliminates CO without back energy. In contrast, such a process does not take place in the studied system since the cleavage of the so formed [H(2)OH(+)...CH(3)CO] transient intermediate involves a high back energy; this is explained by the charge repartition within this intermediate. In fact, a different pathway takes place. The solvated acetaldehyde ion isomerizes into a terbody intermediate in which protonated water is bonded to a CO molecule on the one hand and to a methyl radical on the other hand. Simple cleavages of this complex yield the observed products.

5.
J Am Soc Mass Spectrom ; 12(8): 938-47, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11506226

RESUMO

In the gas phase, the CH2CHOH.+ enol radical cation 1 as well as its higher homologues CH3CHCHOH.+ 2 and (CH3)2CCHOH.+ 3, undergo exactly the same sequence of reactions with tert-butanol, leading to the losses of isobutene, water and water plus alkene. Fourier transform ion cyclotron resonance (FT-ICR) experiments using labeled reactants as well as ab initio calculations show that independent pathways can be proposed to explain the observed reactivity. For ion 1, taken as the simplest model, the first step of the reaction is formation of a proton bound complex which gives, by a simple exothermic proton transfer, the ter-body intermediate [CH2CHO., H2O, C(CH3)3+]. This complex, which was shown to possess a significant lifetime, is the key intermediate which undergoes three reactions. First, it can collapse to yield tert-butylvinyl ether with elimination of water. Second, by a regiospecific proton transfer, this complex can isomerize into three different ter-body complexes formed of water, isobutene and ionized enol. Within one of these complexes, which does not interconvert with the others, elimination of isobutene leads to the formation of a solvated enol ion. Within the others, a cycloaddition-cycloreversion process can proceed to yield the ionized enol 3 (loss of water and ethylene channel).

6.
J Am Soc Mass Spectrom ; 12(3): 288-95, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11281604

RESUMO

Condensed phase protein sequencing typically relies on N-terminal labeling with phenylisothiocyanate ("Edman" reagent), followed by cleavage of the N-terminal amino acid. Similar Edman degradation has been observed in the gas phase by collision-activated dissociation of the N-terminal phenyl thiocarbamoyl protonated peptide [1] to yield complementary b1 and y(n-1) fragments, identifying the N-terminal amino acid. By use of infrared multiphoton (rather than collisional) activation, and Fourier transform ion cyclotron resonance (rather than quadrupole) mass analysis, we extend the method to direct analysis of a mixture of tryptic peptides. We validate the approach with bradykinin as a test peptide, and go on to analyze a mixture of 25 peptides produced by tryptic digestion of apomyoglobin. A b1+ ion is observed for three of the Edman-derivatized peptides, thereby identifying their N-terminal amino-acids. Search of the SWISS-PROT database gave a single hit (myoglobin, from the correct biological species), based on accurate-mass FT-ICR MS for as few as one Edman-derivatized tryptic peptide. The method is robust-it succeeds even with partial tryptic digestion, partial Edman derivatization, and partial MS/MS IRMPD cleavage. Improved efficiency and automation should be straightforward.


Assuntos
Peptídeos/química , Proteínas/química , Tiocarbamatos/química , Tripsina/química , Sequência de Aminoácidos , Apoproteínas/química , Bradicinina/química , Ciclotrons , Bases de Dados Factuais , Análise de Fourier , Dados de Sequência Molecular , Mioglobina/química , Espectrometria de Massas por Ionização por Electrospray
7.
J Am Soc Mass Spectrom ; 11(8): 705-10, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10937793

RESUMO

The bimolecular reaction of the CH2CHOH+ enol ion (m/z 44) with acetaldehyde gives a strongly dominant product, m/z 45, formed mainly by proton transfer from the ion to the molecule. The abundance of the product coming from a H* abstraction reaction from the neutral, albeit more exothermic, is negligible. In order to explain this result, the long lived [CH2CHOH*+, CH3CHO] solvated ion was generated by reaction of the CH2CHOH*+ enol ion with (CH3CHO)n in the cell of a Fourier transform ion cyclotron resonance mass spectrometer. The structure of this solvated ion was clearly established. Labeling indicates that [CH2CHOH+, CH3CHO], upon low energy collisions, reacts by H* abstraction more rapidly than by H+ transfer to the neutral moiety. This shows that the entropic factors are determinant when the enol ion reacts directly with acetaldehyde.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...